Joint Network-Enabled Electronic Warfare II

Course #EC4680

Start Starts: not available

Clock Est. completion in 3 months

Location pin Offered through Distance Learning

Avg. tuition cost per course: See tuition Info For specific tuition costs of each program or contact information, please contact the NPS Tuition office at tuition@nps.edu .

Learn more about Service Obligation Info Officers accepting orders to a Graduate Education Program (GEP) are obligated to serve on active duty after completion.

Questions? Reach out directly:

NPS Online Student Support

online@nps.edu

Email
Offerings database access

Overview

The course is intended for U.S. students with Secret clearance. The course continues the discussion of counter electronic support and begins with an introduction to low-probability-of-intercept (LPI) emitter signaling techniques and technologies. The origin and importance of the LPI emitter are emphasized. Case studies are shown to demonstrate the capability of the LPI emitter as an anti-ship capable missile seeker. Network enabled receiver techniques are presented highlighting the benefits of the sensor-shooter-information grid and swarm intelligence. The new challenges facing the intercept receiver design and the trends in receiver technology are addressed. To increase the processing gain of the receiver, time-frequency signal processing methods are presented and include the pseudo Wigner-Ville distribution, quadrature mirror filter bank trees for wavelet decomposition and the Choi-Williams distribution. Bi-frequency techniques are also emphasized and include cyclostationary processing for estimating the spectral correlation density of the intercepted signal. Calculations using each signal processing method are shown to demonstrate the output information and its correlation with the input signal parameters. New detection results are then derived by the student for various LPI signaling schemes to illustrate the parameter extraction methods developed. Autonomous emitter classification architectures are also presented. Laboratory simulation exercises are conducted to demonstrate the concepts. Requires U.S. citizenship and a Secret clearance.

Security clearance: Secret

Included in Degrees & Certificates

  • 592

Prerequisites

  • EC3700