Aerospace Trajectory Planning and Guidance

Course #ME4881

Est.imated Completion Time: 3 months


Same as AE4881. This course covers the theory, computation and practical implementation of integrated trajectory planning and guidance algorithms for aerospace vehicles. The theory is based on the next generation of dynamical systems in mechanical and aerospace engineering. Examples will be drawn from a sample of DoD problems in space systems, missile engineering and small munitions. After a review of the state of practice, a unified theoretical framework for solving practically constrained trajectory problems will be developed. The Karush-Kuhn-Tucker conditions will form the foundations of constraint violation and validating optimality conditions. Multiplier theory and its use in solving practical problems will be covered from a real-time computational viewpoint. No-fly zones and engineering requirements will be formulated as a mathematical mixture of state and decision-variable constraints. Extensive MATLAB-based mini-projects will form the core of the laboratory experience. These projects are designed for students to learn the process of constructing a flyable trajectory planning algorithm from first principles to an integrated guidance system.

Included in degrees & certificates

  • 299
  • 569


  • AE4850
  • ME4703
  • ME4822
Offerings database access
Asset Publisher

Application Deadlines

  •  08 Jan 2024

    Spring Quarter applications due

  •  01 Apr 2024

    Summer Quarter applications due

  •  08 Jul 2024

    Fall Quarter applications due

Asset Publisher

Academic Calendar

  •  08 Dec 2023

    Last day of classes

  •  12 Dec 2023 – 14 Dec 2023

    Fall Quarter final examinations

  •  15 Dec 2023

    Fall Quarter graduation

See NPS Academic Calendar for more dates.